
Some Computer-Assisted Topological Models 
of Hilbert Fundamental Domains* 

By Harvey Cohn 

Abstract. The Hilbert modular group H for the integral domain O(kl02) has a four- 
dimensional fundamental domain R which should be represented geometrically (like the 
classic modular group). Computer assistance (by the Argonne CDC 3600) was used for 
outlining cross sections of the three-dimensional "floor" of R, which is a mosaic of an in- 
tractably large number of boundary pieces identified under H. The cross sections shown 
here might well contain enough information when k = 2,3,5,6 to form some "incidence 
matrices" and see R (at least) combinatorially. For special symmetrized subgroups of 
H, it is plausible to see homologously independent 2-spheres in (the corresponding) R. 
The program is a continuation of one outlined in two earlier issues of this journal v. 19, 
1965, pp. 594-605, MR 33 #4016, and v. 21, 1967, pp. 76-86, MR 36 #5081. 

14. Final Program. Here we present the third and final revision of a program 
aimed at using the computer to help visualize the four-dimensional, fundamental 
domain of the Hilbert modular group in two complex variables. The improvement 
on the earlier program in [12] leads to a visualization for the first time of some of the 
fundamental domains as they might be described topologically, (or rather com- 
binatorially, i.e., without any claim of knowing all or any of the usual algebraic 
invariants). The groups relate to 0(k1/2) for k = 2, 3, 5, 6. Some 2-spheres also are 
indicated in Section 18 below which (conjecturally) may represent independent 
homology classes. Special attention will also be given to cases cited by Gundlach 
[8] where superdomains are compact complex manifolds. 

From the computer's point of view only a slight improvement is made over the 
revised program in [12]. It consists of tagging all of the transformations which occur 
in (2.5) or (9.4) in the order of their appearance. Thus instead of output diagrams in 
[12] like Figs. 2, 3, 4 (which are labelled according to the "norm," i.e., IN('y)I), we 
shall have diagrams like Fig. 5 where the labelling is fine enough to distinguish 
different transformations (with possibly the same norm). 

Illustratively, Fig. 5 represents the cross section SI = 1 for the case k = 2, where 
R1, (labelled "R") and R2 (labelled "R PRIME") go from -.50 to +.50 in steps of 
.05 each, giving a grid of 21 by 21 points spanning the projection of the floor. (We 
shall temporarily ignore the free-hand markings and designations which are ex- 
plained in Section 17 below and concentrate only on the numbers printed on the 
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grid-points.) These numbers stand for transformations (9.4) which match points of 
the floor of the fundamental domain. Indeed in Table 5, the values of a, 3, -y, 6 are 
listed for the 34 transformations which occur in the range 

(14.1) -1/2 < R1, R2 <+ 1/2, 0 ? S1 ? 1.00. 

(See Remarks (h) and (i) in Section 19 below.) The determinant of the transforma- 
tion, ab - Oy, is also listed (together with congruence classes to be explained in 
Section 18 below). 
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FIGURE 5. Cross section Si = 1 for k = 2. 

15. Specification of Subdomains. In order to make the visualization process less 
formidable, we shall consider supergroups of the Hilbert modular group H (see 
(2.5)) defined by symmetry operations, and we shall consider the corresponding 
subdomain of the fundamental domain R. The motivation is treated elsewhere 
(see [8], [13]) so let us just remark that the object is to make the point at (C "com- 
pactifiable to an ordinary point" of the manifold. 

We consider two ways of augmenting H by symmetry: 

(15.1) H' = augmentation of H by T+ (Z, Z') = (Z', Z) , 

(15.2) H- = augmentation of H by T_ (ZI Z') = (-P1 -2) I 

with reference to the complex conjugate. Of course T+ and T_ are considered ele- 
ments of H.+, Hx-, the subgroups leaving the point at oo invariant. (Compare 
H0. in (2.7) above.) 

In detail, 

(15.3a) T+(X + iY, X' + iY') = (X' + iY', X + iY), 

(15.3b) T7(X + iY, X' + iY') = (-X' + iY', -X + iY), 

so that all transformations of H, H+, H- leave U X U invariant (see (2.2) above). 



478 HARVEY COHN 

Clearly H+ and H- are supergroups in which H has index 2. 
As usual, we shall denote a transformation by referring to a single variable, 

and the conjugate will be understood, e.g., if T(Z) = (3 + 2 21/2)Z', then T(Z')- 
(3 - 2 21/2)Z, etc. 

The fundamental domain of U X U/HO was described in Section 12 (above) as a 
certain fibred 3-space suspended conically at oo. It is desirable that U X U/HO-t 
should be a 3-sphere suspended conically at so, (so that so is an ordinary manifold 
point under the usual compactification). 

More specifically, (compare [13]), the fundamental domain of U X U/HO-k is 
represented by 

(15.4) R1, R2 (modulo 1), 0 S1 < h, 0 < S2, 

subject to further identification on the top surface S1 = h and the bottom surface 
Si = 0. If we combine (12.2) with (15.3) we obtain at Si =h, 

(15.5a) T( )= ?- - j) (\R2, ' 

and, at Si = 0, 

(15.5b) T = ) i 2) (Ri) 

Thus we have the cone at oc suspended from this "half-cube" with boundary 
involutions at top and bottom surfaces (S1 = h and S1 0 0) superimposed on 
"torus" identifications (modulo 1). These involutions have symmetries at S1 = h 
and Si = 0 (compare [13]). There is an invariant form P in RI and R2 preserved 
under T+ (or T-) and an anti-invariant form P' negated under T? (or T_). For 
instance, from (15.5a), these forms are as follows at Si =h: 

T+(P, P') = (PI -P'), 

(15.6a) P = [(u1 + 1)RI + ku2R2]/di, d= g.c.d. (u1 + 1, kU2) 

PI = [(u1 - 1)RI + ku2R2]/d2, d2 = g.c.d. (u1 - 1, ku2) 

while 

T_(P, P') = (PI -P'), 

(15.6b) P = [(u1 - 1)Ri + ku2R2]/d3, d3 = g.c.d. (u1 - 1, kU2) 

PI = [(ui + 1)Ri + ku2R2]/d4, d4 = g.c.d. (ul + 1, kU2) 

We temporarily use the same notation X = Ri + R2k' /2, X' = R1 - R2k"1 2 regard- 
less of whether k 1 (mod 4), in order to simplify the notation in the above equa- 
tions. 

If we consider the most immediate cases we have the following table, 

k U1 U2 h 
2 3 2 1 
3 2 1 1 
5 32 12 

6 5 2 2 
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For k = 2, the situation is depicted in Fig. 6 (if we ignore the spindle shaped solids 
for now). Here, from (15.6a), P = R1 + R2 and P' = R1 + 2R2 are shown as axes 
and directions of reflection, at Si = 1. 

According to a study, presented in [13, p. 12], the fundamental domain U X 
U/HO? is a 3-sphere (S3) projected at oo (or a manifold at oo) precisely when one of 
the following holds: 

(15.7a) T+: (ul - 1)1U2, 

or 

(15.7b) T::u21 (ul + 1) . 

It can be shown that the only units for which the condition (15.7a) can be satisfied are 
3 + 2 .21/2, 2 + 31/2, and 1 (3 + 51/2). (This follows from the fact that "generally" 
u1 = U20 /2 so u, is "much larger than" U2.) Thus except in the three cases cited 
U X U/H,,+ can not be a manifold at cc (under the usual compactification). Of course 
U X U/H.-, on the other hand, can more "easily" be a manifold at so, as is the case 
for 5 + 2 - 61/2 7 + 4 .31/2, ( =+2, compare Section 18 below). 

D 
I -I - 

S= 0 L~~~~~~ 

R. 

XR 

FIGURE 6. Coordinates of floor for k = 2, (T+ symmetry). 

16. Assembling the Cross Sections. We now construct the floor of U X U/H as 
lying over the cube C 

-1/2? R1 < +1/2, 
(16.1) C -1/2?R2?+1/2, 

-h < S1 < +h. 

We temporarily disregard boundary identifications to determine the point (R1, R2, 
S1, S2), i.e., the value of S2 lying over each point (R1, R2, S1), in (say) a grid (S1 = 
const) spanning C, (see Section 2). Then in terms of the coordinates Z, Z', we obtain 

(16.2) min JjyZ + 6112 = 1, 

with (-y, 6) a pair of integers of 0, (ey $ 0) and, as usual, 

(16.3) jyZ + 611 = h'Z + SI JY'Z' + 6'1 
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The optimizing value of S2 determines the (Z, Z') which lies on the floor over 
(R1, R2, S1). We also determine by the revised computation [12] a pair a, A C 0 such 
that for some element of H, another point, namely 

(16.4) Z* = (aZ + 3)/(,yZ + 8), 
Z = (a'Z' + f')/(y'Z' + 8') 

is obtained also lying on the floor over C. The computer labels each point of the 
cross section according to the transformation obtained. 

Now C is divided into three-dimensional regions in which some one definite 
transformation (16.4) is valid. (For k = 2 there are 34 of these transformations 
listed in Table 5.) What we want to do is to cut and paste these regions to produce 
a minimum number of them. For example, any region can be "moved" modulo 0 or 
by multiplication by a unit. 

There is one limitation, however, which is inherent in the construction, namely 
the "norm." Let us call 

(16.5) Nm(Z)= =y'j 

from (16.4). Thus, easily, Nm(Z) = Nm(Z') = Nm(Z*) = Nm(Z*'). The norm is 
unchanged under the "cutting and pasting." Thus there are at least as many pieces 
as norms. Putting the transformations of H in matrix form, we note 

LEMMA 16.1. Let 

T=(a 1^) and To= o f0o) 

be two transformations in H, then for some integral t and X C 0, we can relate the linear 
fractional transformations by 

(16.6) T(Z) = To(Z)E+t + X. 

Consider the cutting and pasting process shown in Fig. 5. We see near the center 
regions "'2" and "20" are treated as one. Certainly, from Table 5, we have 

22=(2 and 220=(1 =) 

so by Lemma 16.1, we expect to find :20(Z) = 2:2(Z) + 1. Furthermore, comparing 
extreme left and right, region "20" is contiguous with region "22," i.e., 220 (Z + 1) 

= 2:22(Z). We now draw (free-hand) lines to delineate regions which are es- 
sentially separate. For this we use the heavy line in Fig. 5, but the dotted line 
separates regions with the same denominator while t F 1 in (16.6). Thus comparing 
"2" and "23" we see :23(Z) = E+z22(Z). (The shading helps separate such re- 
gions and will be explained in Section 17 below.) By assembling the pieces we go 
from Fig. 5 to the left-hand corner parallelogram in Fig. 7, (S1 = 1). 

The "cutting" and "pasting," however successful, seems somewhat arbitrary. 
To see a more general treatment consider an earlier concept [12, Section 11] of 
denominator class of a transformation Z* = (aZ + 3)/(yZ + 8), namely the con- 
gruence class 

(16.7) -8/ (mod 0). 
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We subdivide the cube C (see (16.1)) into open pieces Cj such that the transfor- 
mation Tj will bring a piece Cj into another piece C 1, (possibly 1 = j), also in C. Each 
transformation determines a denominator class -8i/-yj but several (pieces and) 
transformations may have the same class. Incidentally, since the inverse is Z = 
(-AZ* + f)/('yZ* - a), the denominator class of the inverse of Tj namely T1 is 
+aI j/,yj, fixed by aC Abi= -1 mod y j. 

LEMMA 16.2. Consider all (pieces and) transformations belonging to the denominator 
class -bj/,y. Let them have various determinants ej all congruent to one another 
modulo y j. Then all these pieces can be relocated under H. so that they are matched by a 
single transformation Tj. 

The proof consists of changing the variable Z in each transformator so that the 
determinants of the Tj are the same. Then the denominators still belong to the same 
class and a mere translation in (16.6) will accomplish the objective. 

Call the new composite pieces "congruence class pieces." Each such "piece" 
need not be connected, a priori, in the three-dimensional sense (although in practice, 
so far, their closures seem to be connected). The boundaries must confront pieces of 
different congruence classes, so the boundaries are made up of pieces of "surface" 

(16.8) If'YjZ + 5AJ1 = Ilez + bill = 1 

two-dimensional in nature. 
Each congruence class piece will match only another (possibly the same) 

congruence class piece under the transformations which map pieces of the floor 
onto one another. 

X I5 .90 T, -,~~~0 

/Z6??7070 

~~~~~~ '~~~~~~~~C 
T.ZO 

FIGURE 7. Cross sections of floor for k = 2. 

z ?-7---0 

h //~~~~~~~~~~~ora.2 100 7~~.0 

.13 ./? .00 
FIGURE 8. Cross sections of floor for k = 3. 
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17. Special Computations. The cross sections of the floor have been carefully 
computed for k = 2 and k = 3 and are sketched in Figs. 7 and 8. To properly in- 
terpret these sketches, we must ignore designations of T+ and T_ at first and imagine 
a symmetric set of sketches for - h ? Si ? 0 according to the symmetry (Z, Z') 
(Z', Z), in effect T+ (see Section 15 above). 

The sketches were set up so as to show the torus structure, i.e., the periodicity of 
R1, R2 modulo 1. There are two difficulties. First of all, there are pieces of norm 2 
which are spindle-shaped, (see Fig. 6 for k = 2), and which occupy several positions 
which are equivalent modulo 0. One such piece is shaded in each diagram for 
emphasis. (Compare identifying letters on Figs. 6 and 7.) The piece of norm 1 is 
more difficult because it extends above Si = h and below S1 = -h. Therefore it is 
"folded over" into the shaded area of the "parallelogram" type regions. For in- 
stance in Fig. 7, for k = 2, the shaded area transforms like -e+-1/Z, (where e+-' = 
3 - 2 21 /2).- In Fig. 8, the three-dimensional floor is sketched (at least the upper 
half) to show the pieces of norm 1 and of norm 2 for k = 3. 

<~~~'-0 7 X 4r 

?s-too 

-T: V .00~: -- *~ 

.00~~~~~~~~0 

.. oo sas (k=s) 
FIGURE 9. Cross sections of floor for k = 5 and T+-symmetrized solid model. 

In Fig. 9, we show how the floor would be assembled (for k = 5) once the pieces 
representing Z* = -E+-'/Z are folded over for the T+ symmetry. (The same thing 
has to be done for Figs. 7, 8 and 10 where k = 2, 3 and 6 but the process is too 
difficult to represent by a drawing!) 

For k = 2, we note in Fig. 7 that the "parallelogram" (of norm 1) twists its way 
from a position at Si = 0 to a position at S1 = 1, attaching and detaching itself 
from the spindle shaped piece (of norm 2). The attachment and detachment points 
(D) occur at special values which are easy to compute from the output by looking 
for surfaces 1lyZ + all = 1 which intersect there (see Remark (j) below). For in- 
stance, referring to k = 2, 

Z1: S1 = .31 = (really) (4 - 61/2)/5 (k = 2) 

(17.1) Z1:R1 = (-8+ 3.61 /2)/4,IR2 = (3-2.61/2)/4 

Z1: S2 = (-3 + 2.61 /2)/4, 

Z2: S1 = .82 = (really) 61/2 /3 (k = 2) 

(17.2) Z2: RI = (2 - 61/2)/4, R2 = (-61/2 + 1)/4 
Z2: S2 = (-3 + 2.6 / )/4. 
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Likewise for k = 3 there only is one special detachment value, at SI = .13, but 
there the ("parallelogram-shaped") piece of norm 1 is split by the (spindle-shaped) 
piece of norm 2. More strenuously, we find 

3 1/2 (5(1051 /2 - 9) - 2(30 - 2.1051 /2)1/2) 
Z4: S1 = .13 = (really!) (351/2 - 271/2) (1/2(75 - 7.1051/2) )1/2 

(17.3) -1?05/2 (k = 3) 

Z4: RI 1/4(1/2(75-7 - 1051/2))1/2, R2 = +8-5 1=3) 

Z4: S2 = 1/4 (1/2 (15 - 1051/2 )) 1 /2. 

Also at Si = 1, the configuration is not a rectilinear hexagon. It is of some help 
however to know Z3, namely 

Z3: SI = 1 (l = 3) 

(17.4) Z3: RI = (2 - 61/2)/4, R2 = (-6 + 61/2)/4 

Z3: S2 = (-3 + 2.61/2)/4. 

The value of S2 in (17.1) and (17.2) is conjecturally the minimum for k = 2. It is 
rather surprising that it also occurs for (17.4) where k = 3. 

It is also possible to observe an additional symmetry when E+ = E02, as for 
0(21 /2) and 0(51/2). There the top and bottom faces of U X U/HOO+ or U X U/H.- 
become reversed. For instance, under (15.5a) and (15.5b) the self-identification is 

(17.5) T+(X) = X', T_(X) = -X' at Si = 0, 

(17.6) T+(X) = EYX', T_(x) = -e+X' at S1 = h . 

These would be reversed if we change Z to Eo0, i.e., T+(X) at Si = 0 would become 
T4(X) at S = h, etc. The change in sign occurs because eoeo' = -1 (!). 

The symmetry is also manifest in a "plane of symmetry" corresponding to 
Si = kl/2(Eo - 1)/(Eo + 1) = 4 - 2.51/2 = .53 for k = 5 and 2 - 21/2 = .59 for 
k = 2. The detachment points Zi and Z2 in (17.1) and (17.2) are "symmetric" with 
respect to that plane. 

r~~~~~~~~~~~~~~~~~~~~~~~ 
- 

5 2.0~~~200i 1.80 

~~~1.60 1.22 

?.1 

0 
50 T. 

FIGURE 10. Cross sections of floor for k = 6. 
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In Fig. 10, some cross sections are appended for kl 6. Here the sketches can 
make even less pretense to completeness, but they are self-explanatory to the extent 
they supplement general descriptive information in [12, Section 12]. (Compare 
Remark (j) below.) There a description was given of how a piece of norm 2 is de- 
tached for Si near 1.22. There are also spindle-like pieces of norms 3 and 4. We show 
in Fig. 10 how an additional piece of norm 1 is detached. Perhaps the only safe 
conclusion from Fig. 10 is that in general the pieces will interwind and split one 
another in much more complicated fashion than imaginable from these illustrations! 
(Compare [7].) 

Summary of Transformations relative to H (only) 

k = 2, E+ = 3 + 2 .21/2, (Fig. 7). 
Norm 1. 22: Z* = -l/Z, (shaded area 123: Z = e+ 
Norm 2. 28: Z* = (Z - 21 /2)/(21/2Z - 1). 

k = 3, E+ = 2 + 31/2, (Fig. 8). 
Norm 1. Z* = - 1/Z, (shaded area Z* = E+'/Z). 

Norm 2. Z* = (Z - 31/2)/((1 + 31/2)Z - 1). 

= 5, e+ = (3 + 51/2), (Fig. 9). 
Norm 1. Z* = -1/Z, (shaded area Z* =-e+'/Z). 

k = 6, e+ = 5 + 2.61/2, (Fig. 10). 
Norm 1. Z* = - 1/Z, (shaded area Z* =-e+'/Z). 
Norm 2. Z* = (Z - 61/2)/((2 + 61/2)Z - 1). 
Norm 3. Z* = (Z - 2)/((3 + 61/2)Z - 1), (interchanges pieces). 
Norm 4. Z* = (Z - 1)/(2Z -1). 

S ~~~~~~~A 

(a) 2 A 

0 1 

3 1 
~~~~~~~A 

E E 

H F ~~~~~~~~~~~~~~F 

FIGURE 11. Fundamental domains and principal superdomains, (a) mod 2 and (b) mod 3. 

18. Conjectured Nontrivial Homology Classes. As a final step in this pre- 
liminary report, we call attention to certain 2-spheres which can be detected in 
various fundamental domains for H?, which are probably homologously independ- 
ent. They are generalizations of the 2-sphere provided by the fundamental domain 
in the classical modular group, (see [2], and note the shaded region "1" in Fig. 11). 
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Start with the floor of U X U/H+ as represented for k = 2 in Fig. 7 (with the 
T+ symmetry). First take the two-dimensional set with S2 variable and 

Si = 0, 

(18.1) Ri = 0, 

R2 (mod 1) . 

We assert that this is equivalent to the 2-sphere in a manner analogous to the 
(2-sphere) region "1" in Fig. 11 where the base AB is folded over into itself by 
T(Z) = - 1/Z and suspended from o. Here indeed the base R2 (mod 1) is folded 
into itself by T+ and suspended from (S2 =) o. Likewise, take the two-dimensional 
set with S2 variable and 

Si = 0, 

(18.2) R2 = 0, 

R1 (mod 1) . 

Here the base R1 (mod 1) is folded into itself, but not by T+. It is folded into itself 
by the action of the transformation Z* = - I/Z. 

Similar configurations can be found in Figs. 8 and 9. We conjecture these pairs 
are a two-homology basis for the fundamental domain of U X U/H+ or U X U/H- 
in each case. 

Now, as noted by Gundlach [8], these fundamental domains can never be mani- 
folds. Even if they behave like manifolds at S2 = so, they have singularities at the 
finite (elliptic) fixed points. This difficulty can be removed by taking a subgroup of 
H? (which is "too small" to contain these singular fixed points) so we have a super- 
"fundamental domain" consisting of several "building blocks" laid "side by side" 
in accordance with the quotient group of the subgroup. Of the subgroups cited by 
Gundlach, two are simple enough to visualize, (to the extent that we can legitimately 
visualize the original fundamental domain), namely H2+ and H3+ as they will be 
called. 

Note in the meantime, that Fig. 11(a), and Fig. 11(b), show how the fundamental 
domain of the principal congruence subgroup mod 2 and mod 3 are laid out by use 
of the fundamental domain "1" and images under cosets of the quotient group in the 
full group. In matrix form, the cosets (mod 2) are given by Si, S2, S4, S5, S8, S10 
while the cosets (mod 3) are given by all Si, * , S12. The full list is 

Si = ( ) S2 = 01, S3 ) 

(18.3) 4 -1 0) S5 (1 0) 6=(1 0) 
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Next consider H2+, the principal congruence subgroup for k = 2 of H+ (mod 21 /2), 

i.e., those transformations for which =I or T+ (mod 2'/2). The cosets are in 
one-to-one correspondence with the corresponding subgroup of the modular group 
(mod 2). This is shown in Table 5. Here we have six replicas of the fundamental 
domain arrayed similarly to regions "1, 2, 5, 8, 10, 4" of Figure 11(a). The trans- 
formation Z* = -1lZ serves to share the floor between regions such as "1" and 
"4." The pieces of norm 2 on the other hand are contracted into themselves by 
transformations like Z* = (Z - 2' /2)/(21/2Z + 1), (which are incidentally =_ Z 
(mod 2' /2)). It is not hard to see that the 2-sphere in (18.1) is still present, but the 
2-sphere in (18.2) is lost since the identification Z* = - 1/Z is not in H2+. Never- 
theless another 2-sphere is present in the form of six replicas of set (18.2) pasted 
together, (as in Fig. 11(a)). 

Finally consider H13+ the principal congruence subgroup for k = 3 of H+ (mod 
31/2). Here we replace H+ by H+ the so called strict Hilbert modular group, defined 
by using E02 = 7 + 4 .31/2 instead of eo = e+ = 2 + 31 /2. (Equivalently this would 
mean insisting that in (2.7) e is a square unit, not just a totally positive unit.) The 
net effect would be that the fundamental domain of U X U/H+ would be two 
replicas of that of U X U/H+, sewed together "in the S1 direction." Here Fig. 11(b) 
would be applicable. 

Since further discussion would probably bring us outside of the "surveillance" 
of the computer, we do not carry the topological investigations any further. 

19. Concluding Remarks. (h) The downward direction of the R2 axis in Fig. 5 
may seem peculiar but it is due to the direction of the paper in the printer! 

(i) The point R1 = O, R2 = -.50 seems to have a spurious transformation #35 
associated with it on the print-out. This transformation is not listed since the point 
is at an intersection of three-dimensional regions of the floor, so other listed trans- 
formations (e.g., #22, #24, #26, etc.,) are all valid simultaneously. 

(j) The process of locating the critical values (17.1) through (17.4) is illustrated 
above, (see, especially (12.5)). These four values of (,y, 6) are found by inspection. 
(Incidentally the correct value in (12.5) was Si = -1.22 ... = -61/2/2 although 
it escaped notice at the time.) Actually in practice we are helped by observations 
other than (-y, S); for instance in the case referred to, the output showed that 
Im T(Z) = Y', Im T(Z') = Y, for T(Z) = ((1 - 61/2)Z - 3)/(2Z + (1 + 61 /2)). 

This auxiliary observation is as valuable for computing a point of detachment as the 
condition 1l2Z + (1 + 6/2)fl = 1, cited for (12.5). 
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Erratum in [6] 
p. 603, Table 3. For k = 13, Max I N(y) I = 4 (not 3). 

Errata in [12] 
p. 81, Figure 2. Instead of S, read S1. 
p. 82, Figure 3. Instead of S = -.80, read SI = -.40, 

S= -.60, Si = -.20, 
S = -.40, Si = 0.00. 

pp. 84-85, Figure 4. Instead of S, read Si. 


